Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Filled skutterudite structure of europium ruthenium polyphosphide, $\mathrm{EuRu}_{4} \mathrm{P}_{12}$

Isao Kagomiya,* Shiro Funahashi, Terutoshi Sakakura, Takashi Komori and Kiyoaki Tanaka

Graduate School of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Japan
Correspondence e-mail: kagomiya@nitech.ac.jp

Received 11 December 2009; accepted 5 January 2010
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{Ru}-\mathrm{P})=0.0003 \AA$; disorder in main residue; R factor $=0.020 ; w R$ factor $=0.024$; data-to-parameter ratio $=43.5$.

The crystal structure of $\mathrm{EuRu}_{4} \mathrm{P}_{12}$ is isotypic with filled skutterudite structures of rare earth transition metal polyphosphides: $R \mathrm{Fe}_{4} \mathrm{P}_{12}(R=\mathrm{Ce}, \mathrm{Pr}, \mathrm{Nd}, \mathrm{Sm}$ and Eu$), R \mathrm{Ru}_{4} \mathrm{P}_{12}$ ($R=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}$ and Nd) and $R \mathrm{Os}_{4} \mathrm{P}_{12}(R=\mathrm{La}, \mathrm{Ce}, \mathrm{Pr}$ and Nd$)$. The Ru cation is coordinated by six P anions in a distorted octahedral manner. The partially occupied Eu position (site occupancy 0.97) is enclosed by a cage formed by the cornershared framework of the eight RuP_{6} octahedra.

Related literature

The title compound is isotypic with the $\operatorname{Im} \overline{3}$ form of $\mathrm{LaFe}_{4} \mathrm{P}_{12}$, see: Jeitschko \& Braun (1977). For the single-crystal preparation and magnetic and electrical properties of $\mathrm{EuRu}_{4} \mathrm{P}_{12}$, see: Sekine et al. (2000). For hyperfine interaction in $\mathrm{EuRu}_{4} \mathrm{P}_{12}$, see: Grandjean et al. (1983); Indoh et al. (2002). For the method used to avoid multiple diffraction, see: Takenaka et al. (2008).

Experimental

Crystal data

$\mathrm{Eu}_{0.97} \mathrm{Ru}_{4} \mathrm{P}_{12}$
$M_{r}=923.37$
Cubic, $\operatorname{Im} \overline{3}$
$a=8.04163$ (10) \AA
$V=520.04(1) \AA^{3}$

$Z=2$

Mo $K \alpha$ radiation
$\mu=13.37 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
0.04 mm (radius)

Data collection

MacScience M06XHF22 four-circle diffractometer
Absorption correction: for a sphere [transmission coefficients for spheres tabulated in International Tables Vol. C (1992),
Table 6.3.3.3, were interpolated with Lagrange's method (four-

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020 \quad 30$ parameters
$w R\left(F^{2}\right)=0.024$
$S=1.54$
1304 reflections
point interpolation; Yamauchi et al., 1965)]
$T_{\text {min }}=0.486, T_{\text {max }}=0.526$
1564 measured reflections
769 independent reflections 625 reflections with $F>3 \sigma(F)$ $R_{\text {int }}=0.016$

Table 1
Selected bond lengths (\AA).

Eu1-P1	$3.1112(3)$	$\mathrm{P} 1-\mathrm{P} 1^{\mathrm{i}}$	$2.3061(1)$
Eu1-Ru1	3.4821 (1)	$\mathrm{P} 1-\mathrm{P} 1^{i}$	$3.0829(1)$
Ru1-P1	2.3558 (1)		
Symmetry codes: (i) $-x, y,-z ;$ (ii) $-z+\frac{1}{2}, x+\frac{1}{2},-y+\frac{1}{2}$.			

Data collection: MXCSYS (MacScience, 1995) and IUANGLE (Tanaka et al., 1994); cell refinement: RSLC-3 UNICS system (Sakurai \& Kobayashi, 1979); data reduction: RDEDIT (Tanaka, 2008); program(s) used to solve structure: QNTAO (Tanaka et al., 2008); program(s) used to refine structure: $Q N T A O$; molecular graphics: ATOMS for Windows (Dowty, 2000); software used to prepare material for publication: RDEDIT.

Part of this study was supported by the International Training Programme (ITP) from the Japan Society for the Promotion of Science (JSPS).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2130).

References

Dowty, E. (2000). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.
Grandjean, F., Gerard, A., Hodges, J., Braun, D. J. \& Jeitschko, W. (1983). Hyperfine Interact. 15-16, 765-765.
Indoh, K., Onodera, H., Sekine, C., Shirotani, I. \& Yamaguchi, Y. (2002). J. Phys. Soc. Jpn, 71 (Suppl.), 243-245.
Jeitschko, W. \& Braun, D. (1977). Acta Cryst. B33, 3401-3406.
MacScience (1995). MXCSYS. Bruker AXS Inc., Tsukuba, Ibaraki, Japan.
Sakurai, T. \& Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku (Rep. Inst. Phys. Chem. Res.), 55, 69-77.
Sekine, C., Inoue, M., Inaba, T. \& Shirotani, I. (2000). Physica B, 281-282, 308310.

Takenaka, Y., Sakakura, T., Tanaka, K. \& Kishimoto, S. (2008). Acta Cryst. A64, C566.
Tanaka, K. (2008). RDEDIT. Unpublished.
Tanaka, K., Kumazawa, S., Tsubokawa, M., Maruno, S. \& Shirotani, I. (1994). Acta Cryst. A50, 246-252.
Tanaka, K., Makita, R., Funahashi, S., Komori, T. \& Zaw Win (2008). Acta Cryst. A64, 437-449.
Yamauchi, J., Moriguchi, S. \& Ichimatsu, S. (1965). Numerical Calculation Method for Computer. Tokyo: Baifukan.

supplementary materials

Acta Cryst. (2010). E66, i6 [doi:10.1107/S1600536810000589]
Filled skutterudite structure of europium ruthenium polyphosphide, EuRu $_{4} \mathbf{P}_{12}$

I. Kagomiya, S. Funahashi, T. Sakakura, T. Komori and K. Tanaka

Refinement

Multiple diffraction was avoided by using ψ-scans (Takenaka et al., 2008). Intensities were measured at the equi-temperature region of combination of angles ω and χ of a four-circle diffractometer. The intensities have not been included for the refinement if the multiple diffraction cannot be avoided. In addition, the crystal was cooled to 100 K with an Oxford cryostream cooler installed on a four-circle diffractometer. Since the temperature of the sample depends on the ω and χ-angle and the X-ray diffraction measurement was carried out in the equi-temperature area, the ω and χ-angle had the limitation. Thus completeness of the independent reflection was less than 85%.

Figures

Fig. 1. The structure of $\mathrm{EuRu}_{4} \mathrm{P}_{12}$ at 100 K . Small yellow and large red spheres, respectively, represent P and Eu atoms. Green distorted octahedron represent RuO_{6} units.

Europium ruthenium polyphosphide

Crystal data

$\mathrm{Eu}_{0.97} \mathrm{Ru}_{4} \mathrm{P}_{12}$
$M_{r}=923.37$
Cubic, Im $\overline{3}$
Hall symbol: -I 223
$a=8.04163$ (10) \AA
$V=520.04(1) \AA^{3}$
$Z=2$
$D_{\mathrm{x}}=5.925 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 37 reflections
$\theta=36.0-37.7^{\circ}$
$\mu=13.37 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Sphere, black

supplementary materials

$F(000)=828.4$
0.04 mm (radius)

Data collection

MacScience M06XHF22 four-circle diffractometer
Radiation source: fine-focus rotating anode graphite
Detector resolution: $1.25 \times 1.25^{\circ}$ pixels mm^{-1}
$\omega / 2 \theta$ scans
769 independent reflections
625 reflections with $F>3 \sigma(F)$
$R_{\text {int }}=0.016$
$\theta_{\text {max }}=74.2^{\circ}, \theta_{\text {min }}=3.6^{\circ}$
$h=-18 \rightarrow 20$
Absorption correction: for a sphere
[transmission coefficients for spheres tabulated in International Tables Vol. C (1992), Table 6.3.3.3, were $k=-21 \rightarrow 21$
interpolated with Lagrange's method (four-point interpolation; Yamauchi et al., 1965)]
$T_{\text {min }}=0.486, T_{\text {max }}=0.526$
$l=-18 \rightarrow 20$

1564 measured reflections

Refinement

Refinement on F
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.024$
$S=1.54$
1304 reflections

Weighting scheme based on measured s.u.'s
$(\Delta / \sigma)_{\max }=0.018$
$\Delta \rho_{\max }=2.08 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.14$ e \AA^{-3}
Extinction correction: B-C type 1 Gaussian isotropic (Becker \& Coppens, 1975)
Extinction coefficient: 0.068 (6)

30 parameters

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Eu1	0.000000	0.000000	0.000000	$0.00270(2)$	$0.970(4)$
Ru1	0.250000	0.250000	0.250000	$0.001840(15)$	
P1	0.000000	0.359329	0.143386	$0.00283(4)$	

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Eu1	$0.00271(3)$	$0.00271(3)$	$0.00271(3)$	0	0	0
Ru1	$0.00185(3)$	$0.00185(3)$	$0.00185(3)$	$0.000108(17)$	$0.000108(17)$	$0.000108(17)$
P1	$0.00268(10)$	$0.00301(10)$	$0.00285(10)$	0	0	$-0.00009(7)$

Geometric parameters ($\AA,{ }^{\circ}$)

Eu1—P1	$3.1112(3)$	Ru1—P1 ${ }^{\mathrm{i}}$	$2.3558(1)$
Eu1—Ru1	$3.4821(1)$	$\mathrm{P} 1 — \mathrm{P} 1^{\mathrm{ii}}$	$2.3061(1)$
Ru1—P1	$2.3558(1)$	$\mathrm{P} 1 — \mathrm{P} 1^{\mathrm{i}}$	$3.0829(1)$

sup-2

supplementary materials

Eu1—P1—Ru1	77.78	Ru1—P1—P1 ${ }^{\mathrm{i}}$	49.13
Eu1—P1—P1 ${ }^{\mathrm{ii}}$	68.25	$\mathrm{P} 1 — \mathrm{Ru} 1 — \mathrm{P} 1^{\mathrm{i}}$	81.74
Eu1—P1—P1 ${ }^{\mathrm{i}}$	109.77	$\mathrm{P} 1^{\mathrm{ii}} _\mathrm{P} 1 — \mathrm{P} 1^{\mathrm{i}}$	89.59
Ru1—P1——P1 ${ }^{\mathrm{ii}}$	111.34		

Symmetry codes: (i) $-z+1 / 2, x+1 / 2,-y+1 / 2$; (ii) $-x, y,-z$.

supplementary materials

Fig. 1

Fig. 2

